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The following is based on (Leoni, 2009), chapter 1.

Definition 1. Let £ C R be a subset of the real numbers. A function v : £ — R
is called

(i) increasing if Vz,y € E:z <y = u(z) < u(y)
(ii) strictly increasing if Vao,y € F: x <y = u(z) < u(y)

(decreasing analogously). In general, a function u as above is simply called
monotone if any of the above conditions holds.

Of course, a monotone function is not continuous in general. In fact, it usually
is not e.g.
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z+1 xe(1/2,1] S

E=10,1, u(z)= {

However, on intervals, it still has very nice properties regarding continuity. The
definition of an interval used here is the following:

Definition 2. A subset I C R is called an interval, if Vo, y € [ : z < y =
[z,y] € I.

The following two theorems make precise what we mean by ”very nice properties
regarding continuity”.

Theorem 1. Let I C R be an interval and let uw : I — R be a monotone
function. Then the set of points x € R, where u is not continuous is countable.

Theorem 2. Conversely, let E C R be a countable subset. Then there exists
a monotone function u : R — R s.t. the set of points x € R where u is
discontinuous is precisely E.

We will firstly give a preliminary definition and result:

Definition 3. Let X be a set and let u : X — [0,00]. Then the infinite sum
of v over X is defined as

Z u(z) = sup{z u(z)|[E C X, E is ﬁnite} (2)
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The definition may be interpreted as a generalization of a real valued series. In
fact, if such an infinite sum is finite, it can be written as a series i.e. then the
subset {z € X|u(z) > 0} is countable, making the sum countable:



Lemma 1. Let X be a set and let u: X — [0,00]. If

Z u(z) < 00 (3)

reX

then {x € X|u(z) > 0} is countable.

Proof. Let L be an infinite sum that is finite:

L::Zu(a:)<oo . (4)

reX

Also let n € N5 and define X,, := {z € X|u(x) > 1/n} and let E be a finite
subset of X,,. Then for a fixed n € Ny¢ and fixed F C X,,

Bl = <> u(x) <L ()
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Hence, the size of E is bound above by nL (or more precisely by the largest
integer smaller or equal to nL). Thus for any n € Ny the set X, is finite as
well'. Now note that (Xn)nens, defines a monotone increasing sequence of sets
X1 C Xy C ... with the (set theoretic?) limit being {z € X|u(z) > 0} as n
tends towards +o0o. As a limit of finite sets,

{z € X|u(z) > 0} = U Xn (6)

n=1

is thus countable. O

Thus if L < oo implies

L= Z u(r) = Z u(x) (7)

zeX ze{zeX|u(x)>0}

is a series in the usual sense.
Now for the proof of theorem 1.

For a closed interval

Proof. Let I = [a,b] C R with a,b € R be a closed interval and let v : I — R be
a monotone function. Without loss of generality we assume u to be increasing.
Let

u_(z):= lim w(y) and wuy(z):= lim  wu(y) (8)
y—x,y<z Yy—=z,y>T

i.e. the limit of w approaching x from the left and right, respectively.
Then for any = € (a,b) the jump of u at the point x € I is defined as

Su(@) = uy (z) —u(z) 9)

1Were X,, not finite, then for any E C X, there exists an E/ = FU{z} where z € X, \ E.
2For (increasing) monotone sequences this is defined (analogously to series) as
limyp— 400 U?Zl Xnr. In the monotone decreasing case it is limy,— 400 Ny Xn.




Note that u is continuous as z if and only if S, (x) = 0. Since u is monotone
increasing Vo € I : S, (z) > 0 i.e. uy(z) > u_(x). Now, consider a finite subset
E:={z1,...,2,} CI, where a < x; < ;41 <b. Then

u(a) <u_(z1) <ug(zr) <u_(z2) < ... <u_(z,) <ugp(z,) <uld) (10)

Hence for any finite £ C I

Z Su(z) < u(d) — u(a) (11)
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Hence for any E there is an upper bound u(b) — u(a) to the infinite sum of u
over E. With the definitions above

ZS(w) = sup Z S(x) <supu(d) —u(a) < u(d) —ula) < 0 (12)

zel E zeE E
and thus by lemma 1 the set of discontinuities {x € I|S,(z) > 0} is countable.
O

For an arbitrary interval

Lemma 2. Let I C R be an arbitrary interval. Then there exists a sequence of
closed intervals I, = [an,b,] C I C R with n € N such that

D IL,=1 (13)

Note that this is a set theoretic limit of sets.
Proof. (1) Let I =[a,b] C R be a closed interval. Then define I,, := [a, b].

(2) Let I = (a,b) C R be an open interval. Then define I, := [a+1/2",b—1/2"]
3. By construction, for every n € N the interval I,, is closed and by the
definition of an interval made earlier I,, is contained in I and the union over
all the I,, (the set containing x € R such that = is an element of at least
one of the I,) is precisely {z € Rla < z < b}.

(3) Let I = [a,b) C R be a half open interval. Then define I,, := [a,b—1/2"] *
with a similar argument as above.
O

With this lemma we can finalize the previous result to arbitrary intervals as
follows:

Proof. Let w : I — R be defined on an arbitrary interval. Then choose a
sequence of intervals I,, = [a,, b,] C I C R with UZO:1 I, = I where u has only
countable many points of discontinuity. Denote by E,, the set of discontinuous
points in I,,. Then Uzozl E,, is a countable union of countable sets, and thus at
most countable. O

3Strictly speaking, for this expression to be well defined, one needs to require n > ng where
1/2n < b*T“, since then indeed a +1/2™ <b—1/2™
4 Again, for well definition one requires 1/2” < b—a



Proof of Converse Theorem

Proof. Now, let E C I be a countable subset of an interval. If E is finite, a
monotone function with discontinuities at E' can be constructed by hand. Thus,
consider the case where E is countably infinite: E = {1,z2,...}. For each
n € N define the (non-stricly) increasing function u, : R — R as

{—1/2n T < T

14
+1/2" z>a, (14)
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Note that u,, is constant at every point except x,, where it is discontinuous.
Define

u(zx) = Zun(x), reER . (15)
n=1

Indeed, u(z) is continuous wherever all the u,, are. To see this, consider

n o0
N . §
Jm =3 o o= Jim sup] 3 unlo)] < (16)

lim sup Z lun (z)] = (17)
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Jim [tn ()] (18)
k=n-+1

Now since Yz € R : [u(x)—u, ()| < 1/2, this series is dominated by Y77 | 5,
the limit of which is 0. Thus the sum of the u, converges uniformly towards
u and thus u is continuous at every point where all the u,, are continuous. In
particular « is continuous in R\ E.

To show that E constitutes all the points at which w« is discontinuous write for

every m € N

u(z) =t (z) + Y un(z) - (19)

n#m

Then >, ,, un(z) is continuous at u., whereas x,, is not. Hence

Su(Tm) = Su,, (Tm) + SE"#,,L un (Tm) (20)
>0
=0

ie. Sy(x) is not continuous at z,,. Thus u is discontinuous precisely at E =
{l’l,xg,...}. O

Corollary 1. There exists a monotone function u : R — R s.t. u is continuous
on the set of irrational numbers R\ Q and discontinuous on the set of rational
numbers Q.

Theorem 3 (Inverse of an increasing function). Let I C R be an interval
bounded from below, let w : I — R be an increasing function, let J C R be the
smallest interval containing u(I), and let v : J — R be defined by



v(y) :=inf{z € Ilu(z) >y}, yeJ (21)
Then
(i) v:J — R is increasing and left continuous,

(1t) v has a jump at a point yo € J\{sup,c; u(x)} if and only if Vo € (x1,22) C
I:u(x) =y with 1 < a2,

(i1i) Vo € T : v(u(zx)) < x. Strict inequality holds if and only if u is constant
on some interval [z,x] C I with z < z,

(iv) v(y) = xo for ally in some open interval (y1,y2) C J with y1 < y2, and for
some xg € I1° if and only if u jumps at xg and (y1,y2) C (u—(20), us(x0)).

In particular, if the function u is stricly increasing, then v is a left inverse of u
and v is continuous.

References

Leoni, G. (2009). A first course in sobolev spaces (Vol. 105). American Mathe-
matical Society.



