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The following is based on (Leoni, 2009), chapter 1.

Definition 1. Let E ⊆ R be a subset of the real numbers. A function u : E → R
is called

(i) increasing if ∀x, y ∈ E : x < y ⇒ u(x) ≤ u(y)

(ii) strictly increasing if ∀x, y ∈ E : x < y ⇒ u(x) < u(y)

(decreasing analogously). In general, a function u as above is simply called
monotone if any of the above conditions holds.

Of course, a monotone function is not continuous in general. In fact, it usually
is not e.g.

E = [0, 1], u(x) =

{
x x ∈ [0, 1/2]

x + 1 x ∈ (1/2, 1]
(1)

However, on intervals, it still has very nice properties regarding continuity. The
definition of an interval used here is the following:

Definition 2. A subset I ⊆ R is called an interval, if ∀x, y ∈ I : x < y ⇒
[x, y] ⊆ I.

The following two theorems make precise what we mean by ”very nice properties
regarding continuity”.

Theorem 1. Let I ⊆ R be an interval and let u : I → R be a monotone
function. Then the set of points x ∈ R, where u is not continuous is countable.

Theorem 2. Conversely, let E ⊆ R be a countable subset. Then there exists
a monotone function u : R → R s.t. the set of points x ∈ R where u is
discontinuous is precisely E.

We will firstly give a preliminary definition and result:

Definition 3. Let X be a set and let u : X → [0,∞]. Then the infinite sum
of v over X is defined as

∑
x∈X

u(x) := sup

{∑
x∈E

u(x)|E ⊆ X,E is finite

}
(2)

The definition may be interpreted as a generalization of a real valued series. In
fact, if such an infinite sum is finite, it can be written as a series i.e. then the
subset {x ∈ X|u(x) > 0} is countable, making the sum countable:
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Lemma 1. Let X be a set and let u : X → [0,∞]. If∑
x∈X

u(x) <∞ (3)

then {x ∈ X|u(x) > 0} is countable.

Proof. Let L be an infinite sum that is finite:

L :=
∑
x∈X

u(x) <∞ . (4)

Also let n ∈ N>0 and define Xn := {x ∈ X|u(x) > 1/n} and let E be a finite
subset of Xn. Then for a fixed n ∈ N>0 and fixed E ⊆ Xn

|E| · 1

n
≤

∑
x∈E

u(x) ≤ L (5)

Hence, the size of E is bound above by nL (or more precisely by the largest
integer smaller or equal to nL). Thus for any n ∈ N>0 the set Xn is finite as
well1. Now note that (Xn)n∈N>0

defines a monotone increasing sequence of sets
X1 ⊆ X2 ⊆ . . . with the (set theoretic2) limit being {x ∈ X|u(x) > 0} as n
tends towards +∞. As a limit of finite sets,

{x ∈ X|u(x) > 0} =

∞⋃
n=1

Xn (6)

is thus countable.

Thus if L <∞ implies

L =
∑
x∈X

u(x) =
∑

x∈{x∈X|u(x)>0}

u(x) (7)

is a series in the usual sense.
Now for the proof of theorem 1.

For a closed interval

Proof. Let I = [a, b] ⊆ R with a, b ∈ R be a closed interval and let u : I → R be
a monotone function. Without loss of generality we assume u to be increasing.
Let

u−(x) := lim
y→x,y≤x

u(y) and u+(x) := lim
y→x,y≥x

u(y) (8)

i.e. the limit of u approaching x from the left and right, respectively.
Then for any x ∈ (a, b) the jump of u at the point x ∈ I is defined as

Su(x) := u+(x)− u−(x) (9)

1Were Xn not finite, then for any E ⊆ Xn there exists an E′ = E ∪{x} where x ∈ Xn \E.
2For (increasing) monotone sequences this is defined (analogously to series) as

limm→+∞
⋃m

n=1 Xn. In the monotone decreasing case it is limm→+∞ ∩mn=1Xn.
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Note that u is continuous as x if and only if Su(x) = 0. Since u is monotone
increasing ∀x ∈ I : Su(x) ≥ 0 i.e. u+(x) ≥ u−(x). Now, consider a finite subset
E := {x1, . . . , xn} ⊆ I, where a ≤ xi < xi+1 ≤ b. Then

u(a) ≤ u−(x1) ≤ u+(x1) ≤ u−(x2) ≤ . . . ≤ u−(xn) ≤ u+(xn) ≤ u(b) (10)

Hence for any finite E ⊆ I ∑
x∈E

Su(x) ≤ u(b)− u(a) (11)

Hence for any E there is an upper bound u(b) − u(a) to the infinite sum of u
over E. With the definitions above∑

x∈I
S(x) = sup

E

∑
x∈E

S(x) ≤ sup
E

u(b)− u(a) ≤ u(b)− u(a) <∞ (12)

and thus by lemma 1 the set of discontinuities {x ∈ I|Su(x) > 0} is countable.

For an arbitrary interval

Lemma 2. Let I ⊆ R be an arbitrary interval. Then there exists a sequence of
closed intervals In = [an, bn] ⊆ I ⊆ R with n ∈ N such that

∞⋃
n=1

In = I (13)

Note that this is a set theoretic limit of sets.

Proof. (1) Let I = [a, b] ⊆ R be a closed interval. Then define In := [a, b].

(2) Let I = (a, b) ⊆ R be an open interval. Then define In := [a+1/2n, b−1/2n]
3. By construction, for every n ∈ N the interval In is closed and by the
definition of an interval made earlier In is contained in I and the union over
all the In (the set containing x ∈ R such that x is an element of at least
one of the In) is precisely {x ∈ R|a < x < b}.

(3) Let I = [a, b) ⊆ R be a half open interval. Then define In := [a, b− 1/2n] 4

with a similar argument as above.

With this lemma we can finalize the previous result to arbitrary intervals as
follows:

Proof. Let u : I → R be defined on an arbitrary interval. Then choose a
sequence of intervals In = [an, bn] ⊆ I ⊆ R with

⋃∞
n=1 In = I where u has only

countable many points of discontinuity. Denote by En the set of discontinuous
points in In. Then

⋃∞
n=1 En is a countable union of countable sets, and thus at

most countable.

3Strictly speaking, for this expression to be well defined, one needs to require n ≥ n0 where
1/2n ≤ b−a

2
, since then indeed a + 1/2n ≤ b− 1/2n

4Again, for well definition one requires 1/2n ≤ b− a
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Proof of Converse Theorem

Proof. Now, let E ⊆ I be a countable subset of an interval. If E is finite, a
monotone function with discontinuities at E can be constructed by hand. Thus,
consider the case where E is countably infinite: E = {x1, x2, . . .}. For each
n ∈ N define the (non-stricly) increasing function un : R→ R as

un(x) :=

{
−1/2n x < xn

+1/2n x ≥ xn

(14)

Note that un is constant at every point except xn, where it is discontinuous.
Define

u(x) :=

∞∑
n=1

un(x), x ∈ R . (15)

Indeed, u(x) is continuous wherever all the un are. To see this, consider

lim
n→∞

‖ u−
n∑

k=1

un ‖∞= lim
n→∞

sup
x∈I
|
∞∑

k=n+1

un(x)| ≤ (16)

lim
n→∞

sup
x∈I

∞∑
k=n+1

|un(x)| = (17)

lim
n→∞

∞∑
k=n+1

|un(x)| (18)

Now since ∀x ∈ R : |u(x)−un(x)| ≤ 1/2n, this series is dominated by
∑∞

k=n+1
1
2n ,

the limit of which is 0. Thus the sum of the un converges uniformly towards
u and thus u is continuous at every point where all the un are continuous. In
particular u is continuous in R \ E.
To show that E constitutes all the points at which u is discontinuous write for
every m ∈ N

u(x) = um(x) +
∑
n 6=m

un(x) . (19)

Then
∑

n 6=m un(x) is continuous at um whereas xm is not. Hence

Su(xm) = Sum(xm)︸ ︷︷ ︸
>0

+S∑
n6=m un

(xm)︸ ︷︷ ︸
=0

(20)

i.e. Su(x) is not continuous at xm. Thus u is discontinuous precisely at E =
{x1, x2, . . .}.

Corollary 1. There exists a monotone function u : R→ R s.t. u is continuous
on the set of irrational numbers R \Q and discontinuous on the set of rational
numbers Q.

Theorem 3 (Inverse of an increasing function). Let I ⊂ R be an interval
bounded from below, let u : I → R be an increasing function, let J ⊆ R be the
smallest interval containing u(I), and let v : J → R be defined by
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v(y) := inf{z ∈ I|u(z) ≥ y}, y ∈ J (21)

Then

(i) v : J → R is increasing and left continuous,

(ii) v has a jump at a point y0 ∈ J\{supx∈I u(x)} if and only if ∀x ∈ (x1, x2) ⊆
I : u(x) = y0 with x1 < x2,

(iii) ∀x ∈ I : v(u(x)) ≤ x. Strict inequality holds if and only if u is constant
on some interval [z, x] ⊂ I with z < x,

(iv) v(y) = x0 for all y in some open interval (y1, y2) ⊂ J with y1 < y2, and for
some x0 ∈ Io if and only if u jumps at x0 and (y1, y2) ⊆ (u−(x0), u+(x0)).

In particular, if the function u is stricly increasing, then v is a left inverse of u
and v is continuous.
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