Commutativity of Limits and Colimits

G. Chiusole

Recall: Product category Let C,D be categories. Then their product is defined by the
following data

e Ob(C x D): Collection of ordered pairs (A, B) where A € Ob(C), B € Ob(D).

e Homexp((A1, Bi), (A2, Ba)): Collection of pairs of morphisms (f, g) where f : Ay — As,
g: B1 — B2.

The composition is defined component-wise, and the identity is the component-wise identity.
Recall: Limit Let I be a small category and X : I — C a diagram, then a limit is a rep-

resentation of Nat(A(—), X) : C°P — Set i.e. a cone (L, (I;);) where L € C and the I; are the
components of the natural transformation A(L) — X, which is final among such cones.

LIMIT AS A FUNCTOR

Let X : I x J — C be a functor, then X (i,—) : J — C via j — X (4,7) and f — X(id;, f) is a
functOIE for every i € I. (cf. a bilinear map is linear in either entry when the other is fixed.). If
its limit exists, denote it L; or limy X (i, —) and its legs by l; or similar suggestive notation.

Theorem 1 (Herrlich und Strecker| [1979]). In the above context, there exists a unique functor
L:1—Cuwviair L; and m — Ly, s.t. for every m :i — i the following diagram commutes.
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Proof. Since L; is a limit of X (i, —) and L; is a limit of X (i, —) and m : i — 4, ¢ : j — j, the
assumed data gives the diagram

ll
Li %X(U)gmw
X(m

lZ
L, —— X(i,j) ———

@>
ks)

X (id;, f) is sometimes simply denoted X (i, f).



Since the right square in diagram commutes, this makes (L;, (X (m, j) ol%)) a cone over X(z,—)
and thus gives a unique morphism L,, : L; — L; which makes the diagram commute.

This assignment is indeed a functor:
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Figure 1: Composition

In diagram |1} with n : ¢ — ¢, both squares are commutative and thus the whole square is
commutative. Now since

l; OLn OLm = X(TL,_]) OX(mvj) Ol;‘ = X(nOmaj) Ol;‘ = l; OLnom (1)

=X (nom,j)

Now since L;, is a limit and X (n o m, j) o I% makes L; into a limit over X (i, —) there exists a
unique morphism L; — L;, making the diagram commute. Thus indeed L,, o L., = Lyom-

In the right square we have
X(ids, j) ol =15 = 1% oidy, =1} o Ly, (2)
which concludes the proof of functoriality of L. O

An analogous proof can be made for colimits instead of limits.

1 COMMUTATION OF LIMITS-LIMIT

Theorem 2 (Herrlich und Strecker| [1979]). Let X : I x J — C a diagram in C where I and J
are small. Assume X (i,—) : J — C has a limit (L;, (1})s) for everyi € I and let L : I — C by
i — L; be the aforementioned functor. Then the diagram X has a limit if and only if the diagram
L has a limit. If they exist, they coincide.

In other notation that means that limylim; X ~ lim;y; X ~ limylim; X.

Proof. Let (L, (p;)1) be a limit of L. Then (L, (I op;)1x s) is a cone for the diagram X. Consider
the diagram
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where m:i — i, n:j— j. B

Here, the lower left triangle commutes because (L, (p;)r) is a limit of L, the upper right triangle
commutes because (L, (1)) is a limit of X (4, —) and the lower right square commutes by the-
orem [I1

Let (R, (gij)1x.) be a cone over X, then it is in particular a cone over X (i,—) for every i € I.
So since (Li, (I5)) is a limit for X (i, —) there exists a unique morphism r; : R — L; s.t. the
following diagram commutes:
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By the previous arguments all the morphisms given exist and the indicated cells commute. Now
it is just to show that the triangle (R, L;, L;) commutes. If this is the case, we can conclude
that (R, (r;)7) is a cone over L and thus there uniquely exists an h : R — L s.t. the diagram
commutes. For this,



l§OLmori:X(m,j)OZ;»orizX(m,j)oqij:q;j:l;or; (3)

Hence since L; is a limit over X (%, —) and R is a cone over that diagram, the morphism R — L;
making the diagram commute is unique. Hence indeed L,,, or; = r;. This shows that the triangle
(R, L;, L;) commutes.

Thus we have shown that for any cone (R, (gij)1xs) over X there uniquely exists an 7 : R — L
with the property that for every (¢, j) € I xJ we have ¢;; = l; op;oT. Consequently, (L, (l; opi)Ix.J)
is a limit of X.

O
An analogous proof can be done for colimits and thus also: colimits commute with colimits.

Example 1 (Pushout-Cokernel, [Brandenburg| [2016] 6.6.14). In the category Ab of abelian
groups and group homomorphisms, for U; C A;,Us; C Ay we have the following (canonical)
isomorphism

(A1 @A) /(Uy @ Us) = A1 /UL © Ay /U . (4)

The existence of this isomorphism is ensured by the preceding theorem. Explicitly, the construc-
tion is as follows:
Consider the finite categories

I:e oy, J ey ey — e (5)
i.e. the index categories for a coproduct and pushout, respectively. Now consider the product
category and the diagram
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{e}

Here, the theorem comes into play:

1. Either firstly compute the cokernel and then the direct sum of the two. This amounts to
computing colimy X (1,—) = A;/U; and colimy X (2,—) = Ay/U; and then their direct
sum, which is colimy colimy X = A;/U; ® As/Us.

2. Or firstly compute the direct sums and then their cokernel. This amounts to firstly com-
puting colim; X (—,U) = U; @ Us and colim; X(—, A) & A; @ As and then their cokernel
colimy colim; X = (A; @ A2)/(Uy & Us).

The respective limit cones are given in the following diagrams.
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Computation 1 Computation 2

2 COMMUTATION OF LiMIT-COLIMIT

Theorem 3. Let X : I x J — C a diagram s.t. colimylim; X and limy colim; X exist. Then
there exists a canonical map

k@ colimlim X — lim colimX (6)
I J I

Proof. Firstly, by the definition of a colimit, for every ¢ € I there exists a morphism ¢; :
limy X (4, —) — colim;lim; X. Furthermore, for every fixed i € I and j € J there exists a
l; :limy X (i, —) = X (4,4). The analogous is true for the right side of the below diagram.

Then define &;; : limy X (¢, —) — colim; X (—, 7). If we can show that (1) lim; X (¢, —) is a cone
over the diagram colim; X(—,—) : J — C by the definition of limit, for every i € I, the set
{ki;} uniquely induces a «; : lim; X (i, —) — limy collimX(i,j) s.t. the corresponding triangle
commutes. Then (2), in turn, the set {k;} uniquely induces a morphism « : colIim lim; X (4,7) —

lim ; collimX (,7) by the definition of a colimit.

(1) Note that it suffices to show that the right lower triangle commutes. In order to use (the
here stated version of) theorem [1} we will show that lower left triangle commutes.

It is to show that for every 7 € I and m : i — 4 there is a morphism a : lim; X (i, —) —
X(i,7) s.t. the triangle commutes (for the right triangle this is b). Such an a is given by

I5 0 X(m,j) : lim; X(i,—) = X(i,7) — X(i,7) by theorem The analogous result is that
the right triangle commutes and thus lim; X (¢, —) is indeed a desired cone.

(2) The triangle that should commute is given by three commutative triangles.
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Example 2. Let f: X x Y — R be a function. Then, provided they exist,
sup inf f(z,y) < inf su x, 7
zegyeyf( Y) yeyguegf( Y) (7)

Proof. Consider the partially ordered set R as a category with morphisms < and X, Y as discrete
index categories. ]

Example 3. For abelian groups, there exist the morphism
kP IIz- [Pz (aij)ijen = (aji)ijen (8)
i€N jEN jeN ieN
o oo L j<i
which is injective, but not surjective. For example, the element defined by a;; = 0 s
J>1
not in the image.

3 FILTERED LiMITS - FINITE LIMITS

Definition 1. A category C is called filtered if every finite diagram in C has a cocone.
Remark 1. Note that every category with a terminal object is filtered. This, thus, includes
Set, Top, Cat and algebraic categories. However, for example e < e — o is not filtered.

Remark 2. A colimit (of shape T) in Set is explicitely given (dually to a limit) as a coequalizer
of a coproduct. That is, the quotient of a disjoint union []; X (7) under the equivalence relation



which is generated by x; ~ z; if IX(f) : X (i) — X (i) with X (f)(z;) = x;. (cf. a pushout of sets)

For a filtered index category I this amounts to x; ~ x; if and only if 3t € I : X (f)(x;) = X(g)(x;)
for some f : i — t, g : i — t, because then there exists a cocone under that diagram and thus
a morphism X (i) — X (¢) making that diagram commute. Note that in the case of I not being
filtered, this does not give an equivalence relation.

Theorem 4. Let X : I x J — Set be diagram in the category of sets and let I be filtered and J
finite (with n objects). Then

colimlim X ~ lim colimX (9)
I J
with the isomorphism being given by the canonical morphism described in theorem [3

e More generally, this is true when replacing Set by any algebraic category. See Brandenburg
[2016].

e With some subtleties, one can generalize this to index categories of higher cardinality. See
Satz 5.2 in |Gabriel und Ulmer| [2006].

e In fact, a category I is filtered if and only if colimits of shape I commute with finite limits
in Set. See section 2.13 of |Borceux| [1994].

Proof. The proof uses the explicit construction of limits in Set and of filtered colimits.

e k is injective: Let x,y € colimylim; X s.t. k(x) = k(y). Then by the construction of
the limit as subset of [, colim; X one may express this in coordinates as (z;); = k(x) =
k(y) = (y;)s which means that Vj € J : x; = y;. However, by the explicit definition of
the colimit over a filtered index category as [[; X (¢,7)/ ~ for fixed j € J, this means that
there exists a t € I s.t. for X (i,§) —; X(t,5) 4 X(i,7) we have z +— f(z) = g(y) <+ y
for every j € J. Applying the limit over J, this yields the same for x € lim; X (i, —) and
y € limy X (i, —) and thus by definition their equivalence classes are equal in colimy lim ; X,
showing injectivity.

e Let (T;)s € limy colim; X be arbitrary. Then for all j € J we have T; € colim; X (—, j),
which is an equivalence class of elements in [[; X (4, j). Pick a representative z; € X (i, j)
which lies in X (¢}, j) for some sufficient i; € I. Then we want to show that there exists a
t € I s.t. there is a representative z; € X (t,j) for every j € J, since then = € lim; X (¢, —)
and thus T € colimylim; X which gives the surjectivity. But this is precisely the case
because J is finite.

O
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