
Commutativity of Limits and Colimits

G. Chiusole

Recall: Product category Let C,D be categories. Then their product is defined by the
following data

• Ob(C × D): Collection of ordered pairs (A,B) where A ∈ Ob(C), B ∈ Ob(D).

• HomC×D((A1, B1), (A2, B2)): Collection of pairs of morphisms (f, g) where f : A1 → A2,
g : B1 → B2.

The composition is defined component-wise, and the identity is the component-wise identity.

Recall: Limit Let I be a small category and X : I → C a diagram, then a limit is a rep-
resentation of Nat(∆(−), X) : Cop → Set i.e. a cone (L, (li)I) where L ∈ C and the li are the
components of the natural transformation ∆(L)→ X, which is final among such cones.

Limit as a functor

Let X : I × J → C be a functor, then X(i,−) : J → C via j 7→ X(i, j) and f 7→ X(idi, f) is a
functor1 for every i ∈ I. (cf. a bilinear map is linear in either entry when the other is fixed.). If
its limit exists, denote it Li or limJ X(i,−) and its legs by lij or similar suggestive notation.

Theorem 1 (Herrlich und Strecker [1979]). In the above context, there exists a unique functor
L : I → C via i 7→ Li and m 7→ Lm s.t. for every m : i→ î the following diagram commutes.

Li

Lî

X(i, j)

X (̂i, j)

Lm

lîj

lij

X(m, j)

Proof. Since Li is a limit of X(i,−) and Lî is a limit of X (̂i,−) and m : i → î, q : j → ĵ, the
assumed data gives the diagram

Li

Lî

X(i, j)

X (̂i, j)

X(i, ĵ)

X (̂i, ĵ)
lîj

lij

X(m, j)

X(i, q)

X (̂i, q)

X(m, ĵ)

1X(idi, f) is sometimes simply denoted X(i, f).

1



Since the right square in diagram commutes, this makes (Li, (X(m, j) ◦ lij)) a cone over X (̂i,−)
and thus gives a unique morphism Lm : Li → Lî which makes the diagram commute.

This assignment is indeed a functor:

Li Lî

X (̂i, j)X(i, j)

Lî′

X (̂i′, j)

Lm

lîjlij

X(m, j)

Ln

X(n, j)

li
′

j

Ln◦m

X(n ◦m, j)

Figure 1: Composition

Li

Li

X(i, j)

X(i, j)

Lidi

lij

lij

X(idi, j)

Figure 2: Identity

In diagram 1, with n : î → î′, both squares are commutative and thus the whole square is
commutative. Now since

li
′

j ◦ Ln ◦ Lm = X(n, j) ◦X(m, j)︸ ︷︷ ︸
=X(n◦m,j)

◦lij = X(n ◦m, j) ◦ lij = li
′

j ◦ Ln◦m (1)

Now since Lî′ is a limit and X(n ◦m, j) ◦ lij makes Li into a limit over X (̂i′,−) there exists a
unique morphism Li → Lî′ making the diagram commute. Thus indeed Ln ◦ Lm = Ln◦m.

In the right square we have

X(idi, j) ◦ lij = lij = lij ◦ idLi = lij ◦ Lidi (2)

which concludes the proof of functoriality of L.

An analogous proof can be made for colimits instead of limits.

1 Commutation of Limits-Limit

Theorem 2 (Herrlich und Strecker [1979]). Let X : I × J → C a diagram in C where I and J
are small. Assume X(i,−) : J → C has a limit (Li, (l

i
j)J) for every i ∈ I and let L : I → C by

i 7→ Li be the aforementioned functor. Then the diagram X has a limit if and only if the diagram
L has a limit. If they exist, they coincide.

In other notation that means that limI limJ X ' limI×J X ' limJ limI X.

Proof. Let (L, (pi)I) be a limit of L. Then (L, (lij ◦pi)I×J) is a cone for the diagram X. Consider
the diagram
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L

Li

Lî

X(i, j)

X(i, ĵ)

X (̂i, ĵ)

pi

pî

lij

li
ĵ

Lm

lî
ĵ

X(i, n)

X(m, ĵ)

where m : i→ î, n : j → ĵ.
Here, the lower left triangle commutes because (L, (pi)I) is a limit of L, the upper right triangle
commutes because (Li, (l

i
j)J) is a limit of X(i,−) and the lower right square commutes by the-

orem 1.

Let (R, (qij)I×J) be a cone over X, then it is in particular a cone over X(i,−) for every i ∈ I.
So since (Li, (l

i
j)J) is a limit for X(i,−) there exists a unique morphism ri : R → Li s.t. the

following diagram commutes:

R Li

X(i, j)

X(i, ĵ)

lij

li
ĵ

X(i, n)

qij

qiĵ

∃!ri

Thus we are in the situation to use theorem 1 for the next diagram.

R L

Li

Lî

X(i, j)

X (̂i, j)

�

�

��

pi

pî

lij

Lm

lîj

X(m, j)

ri

rî

qij

qîj

∃!r

By the previous arguments all the morphisms given exist and the indicated cells commute. Now
it is just to show that the triangle (R,Li, Lî) commutes. If this is the case, we can conclude
that (R, (ri)I) is a cone over L and thus there uniquely exists an h : R → L s.t. the diagram
commutes. For this,
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lîj ◦ Lm ◦ ri = X(m, j) ◦ lij ◦ ri = X(m, j) ◦ qij = qîj = lîj ◦ rî (3)

Hence since Lî is a limit over X (̂i,−) and R is a cone over that diagram, the morphism R→ Lî

making the diagram commute is unique. Hence indeed Lm ◦ri = rî. This shows that the triangle
(R,Li, Lî) commutes.

Thus we have shown that for any cone (R, (qij)I×J) over X there uniquely exists an r : R → L
with the property that for every (i, j) ∈ I×J we have qij = lij◦pi◦r. Consequently, (L, (lij◦pi)I×J)
is a limit of X.

An analogous proof can be done for colimits and thus also: colimits commute with colimits.

Example 1 (Pushout-Cokernel, Brandenburg [2016] 6.6.14). In the category Ab of abelian
groups and group homomorphisms, for U1 ⊆ A1, U2 ⊆ A2 we have the following (canonical)
isomorphism

(A1 ⊕A2)/(U1 ⊕ U2) ∼= A1/U1 ⊕A2/U2 . (4)

The existence of this isomorphism is ensured by the preceding theorem. Explicitly, the construc-
tion is as follows:
Consider the finite categories

I : •1 •2, J : •2 ← •0 → •1 (5)

i.e. the index categories for a coproduct and pushout, respectively. Now consider the product
category and the diagram

U1 A1

{e}

U2 A2

{e}

f1

∃!
f2

∃!

Here, the theorem comes into play:

1. Either firstly compute the cokernel and then the direct sum of the two. This amounts to
computing colimJ X(1,−) ∼= A1/U1 and colimJ X(2,−) ∼= A2/U2 and then their direct
sum, which is colimI colimJ X = A1/U1 ⊕A2/U2.

2. Or firstly compute the direct sums and then their cokernel. This amounts to firstly com-
puting colimI X(−, U) ∼= U1 ⊕ U2 and colimI X(−, A) ∼= A1 ⊕ A2 and then their cokernel
colimJ colimI X ∼= (A1 ⊕A2)/(U1 ⊕ U2).

The respective limit cones are given in the following diagrams.
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U1 A1

{e} A1/U1

A1/U1 ⊕A2/U2

U2 A2

{e} A2/U2

f1

∃!
f2

∃!

Computation 1

U1 A1

{e}

U1 ⊕ U2 A1 ⊕A2

{e} (A1 ⊕A2)/(U1 ⊕ U2)

U2 A2

{e}

f1

∃!
f2

∃!

f1 ⊕ f2

∃!

Computation 2

2 Commutation of Limit-Colimit

Theorem 3. Let X : I × J → C a diagram s.t. colimI limJ X and limJ colimI X exist. Then
there exists a canonical map

κ : colim
I

lim
J
X → lim

J
colim

I
X (6)

Proof. Firstly, by the definition of a colimit, for every i ∈ I there exists a morphism ιi :
limJ X(i,−) → colimI limJ X. Furthermore, for every fixed i ∈ I and j ∈ J there exists a
lij : limJ X(i,−)→ X(i, j). The analogous is true for the right side of the below diagram.

Then define κij : limJ X(i,−)→ colimI X(−, j). If we can show that (1) limJ X(i,−) is a cone
over the diagram colimI X(−,−) : J → C by the definition of limit, for every i ∈ I, the set
{κij} uniquely induces a κi : limJ X(i,−) → limJ colim

I
X(i, j) s.t. the corresponding triangle

commutes. Then (2), in turn, the set {κi} uniquely induces a morphism κ : colim
I

limJ X(i, j)→
limJ colim

I
X(i, j) by the definition of a colimit.

(1) Note that it suffices to show that the right lower triangle commutes. In order to use (the
here stated version of) theorem 1, we will show that lower left triangle commutes.

It is to show that for every î ∈ I and m : i → î there is a morphism a : limJ X (̂i,−) →
X(i, j) s.t. the triangle commutes (for the right triangle this is b). Such an a is given by

lîj ◦X(m, j) : limJ X (̂i,−) → X (̂i, j) → X(i, j) by theorem 1. The analogous result is that
the right triangle commutes and thus limJ X(i,−) is indeed a desired cone.

(2) The triangle that should commute is given by three commutative triangles.
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colimI limJ X

limJ X(i,−)

X(i, j)

limJ X (̂i,−)

limJ colimI X

colimI X(−, j)

colimI X(−, ĵ)X (̂i, j)

	 	

	

	

ιi pi

lij cji

a b

limJ X(m,−) colimI X(−, n)

lîj

X(m, j)

κ

κi

κij

Example 2. Let f : X × Y → R be a function. Then, provided they exist,

sup
x∈X

inf
y∈Y

f(x, y) ≤ inf
y∈Y

sup
x∈X

f(x, y) (7)

Proof. Consider the partially ordered set R as a category with morphisms ≤ and X,Y as discrete
index categories.

Example 3. For abelian groups, there exist the morphism

κ :
⊕
i∈N

∏
j∈N

Z→
∏
j∈N

⊕
i∈N

Z; (aij)i,j∈N 7→ (aji)i,j∈N (8)

which is injective, but not surjective. For example, the element defined by aij =

{
1 j ≤ i
0 j > i

is

not in the image.

3 Filtered Limits - Finite Limits

Definition 1. A category C is called filtered if every finite diagram in C has a cocone.

Remark 1. Note that every category with a terminal object is filtered. This, thus, includes
Set,Top,Cat and algebraic categories. However, for example • ← • → • is not filtered.

Remark 2. A colimit (of shape I) in Set is explicitely given (dually to a limit) as a coequalizer
of a coproduct. That is, the quotient of a disjoint union

∐
I X(i) under the equivalence relation

6



which is generated by xi ∼ xî if ∃X(f) : X(i)→ X (̂i) with X(f)(xi) = xî. (cf. a pushout of sets)

For a filtered index category I this amounts to xi ∼ xî if and only if ∃t ∈ I : X(f)(xi) = X(g)(xî)

for some f : i → t, g : î → t, because then there exists a cocone under that diagram and thus
a morphism X(i) → X (̂i) making that diagram commute. Note that in the case of I not being
filtered, this does not give an equivalence relation.

Theorem 4. Let X : I × J → Set be diagram in the category of sets and let I be filtered and J
finite (with n objects). Then

colim
I

lim
J
X ' lim

J
colim

I
X (9)

with the isomorphism being given by the canonical morphism described in theorem 3.

• More generally, this is true when replacing Set by any algebraic category. See Brandenburg
[2016].

• With some subtleties, one can generalize this to index categories of higher cardinality. See
Satz 5.2 in Gabriel und Ulmer [2006].

• In fact, a category I is filtered if and only if colimits of shape I commute with finite limits
in Set. See section 2.13 of Borceux [1994].

Proof. The proof uses the explicit construction of limits in Set and of filtered colimits.

• κ is injective: Let x, y ∈ colimI limJ X s.t. κ(x) = κ(y). Then by the construction of
the limit as subset of

∏
J colimI X one may express this in coordinates as (xj)J = κ(x) =

κ(y) = (yj)J which means that ∀j ∈ J : xj = yj . However, by the explicit definition of
the colimit over a filtered index category as

∐
I X(i, j)/ ∼ for fixed j ∈ J , this means that

there exists a t ∈ I s.t. for X(i, j) →f X(t, j) ←g X (̂i, j) we have x 7→ f(x) = g(y) ← [ y
for every j ∈ J . Applying the limit over J , this yields the same for x ∈ limJ X(i,−) and
y ∈ limJ X (̂i,−) and thus by definition their equivalence classes are equal in colimI limJ X,
showing injectivity.

• Let (xj)J ∈ limJ colimI X be arbitrary. Then for all j ∈ J we have xj ∈ colimI X(−, j),
which is an equivalence class of elements in

∐
I X(i, j). Pick a representative xj ∈ X(ij , j)

which lies in X(ij , j) for some sufficient ij ∈ I. Then we want to show that there exists a
t ∈ I s.t. there is a representative x′j ∈ X(t, j) for every j ∈ J , since then x ∈ limJ X(t,−)
and thus x ∈ colimI limJ X which gives the surjectivity. But this is precisely the case
because J is finite.
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