Commutativity of Limits and Colimits

G. Chiusole

Recall: Product category Let C, D be categories. Then their product is defined by the following data

- $\mathbf{Ob}(\mathcal{C} \times \mathcal{D})$: Collection of ordered pairs (A, B) where $A \in \mathbf{Ob}(\mathcal{C}), B \in \mathbf{Ob}(\mathcal{D})$.
- Hom_{C×D}($(A_1, B_1), (A_2, B_2)$): Collection of pairs of morphisms (f, g) where $f : A_1 \rightarrow A_2$, $g:B_1\rightarrow B_2.$

The composition is defined component-wise, and the identity is the component-wise identity.

Recall: Limit Let I be a small category and $X : I \to C$ a diagram, then a limit is a representation of Nat $(\Delta(-), X): C^{op} \to \mathbf{Set}$ i.e. a cone $(L, (l_i)_I)$ where $L \in \mathcal{C}$ and the l_i are the components of the natural transformation $\Delta(L) \to X$, which is final among such cones.

Limit as a functor

Let $X: I \times J \to \mathcal{C}$ be a functor, then $X(i, -): J \to \mathcal{C}$ via $j \mapsto X(i, j)$ and $f \mapsto X(id_i, f)$ is a functor^{[1](#page-0-0)} for every $i \in I$. (cf. a bilinear map is linear in either entry when the other is fixed.). If its limit exists, denote it L_i or $\lim_j X(i, -)$ and its legs by l_j^i or similar suggestive notation.

Theorem 1 [\(Herrlich und Strecker](#page-7-0) [\[1979\]](#page-7-0)). In the above context, there exists a unique functor $L: I \to \mathcal{C}$ via $i \mapsto L_i$ and $m \mapsto L_m$ s.t. for every $m : i \to \hat{i}$ the following diagram commutes.

$$
L_i \xrightarrow{l_j^i} X(i,j)
$$

\n
$$
L_m \xrightarrow{l_i^i} X(m,j)
$$

\n
$$
L_i \xrightarrow{l_j^i} X(\hat{i},j)
$$

Proof. Since L_i is a limit of $X(i, -)$ and L_i is a limit of $X(i, -)$ and $m : i \to \hat{i}$, $q : j \to \hat{j}$, the assumed data gives the diagram

$$
L_i \xrightarrow{l_j^i} X(i,j) \xrightarrow{X(i,q)} X(i,\hat{j})
$$

$$
\downarrow X(m,j) \qquad \qquad X(m,\hat{j})
$$

$$
L_{\hat{i}} \xrightarrow{l_j^{\hat{i}}} X(\hat{i},j) \xrightarrow{X(\hat{i},q)} X(\hat{i},\hat{j})
$$

 $\frac{1}{X(id_i, f)}$ is sometimes simply denoted $\overline{X}(i, f)$.

Since the right square in diagram commutes, this makes $(L_i, (X(m, j) \circ l_j^i))$ a cone over $X(\hat{i}, -)$ and thus gives a unique morphism $L_m: L_i \to L_i$ which makes the diagram commute.

This assignment is indeed a functor:

Figure 1: Composition

In diagram [1,](#page-1-0) with $n : \hat{i} \to \hat{i}'$, both squares are commutative and thus the whole square is commutative. Now since

$$
l_j^{i'} \circ L_n \circ L_m = \underbrace{X(n,j) \circ X(m,j)}_{=X(n \circ m,j)} \circ l_j^i = X(n \circ m, j) \circ l_j^i = l_j^{i'} \circ L_{nom}
$$
\n⁽¹⁾

Now since $L_{\hat{i}'}$ is a limit and $X(n \circ m, j) \circ l_j^i$ makes L_i into a limit over $X(\hat{i}', -)$ there exists a unique morphism $L_i \to L_{\hat{i}'}$ making the diagram commute. Thus indeed $L_n \circ L_m = L_{nom}$.

In the right square we have

$$
X(\mathrm{id}_{i}, j) \circ l_{j}^{i} = l_{j}^{i} = l_{j}^{i} \circ \mathrm{id}_{L_{i}} = l_{j}^{i} \circ L_{\mathrm{id}_{i}}
$$
\n
$$
(2)
$$

 \Box

which concludes the proof of functoriality of L.

An analogous proof can be made for colimits instead of limits.

1 Commutation of Limits-Limit

Theorem 2 [\(Herrlich und Strecker](#page-7-0) [\[1979\]](#page-7-0)). Let $X : I \times J \to C$ a diagram in C where I and J are small. Assume $X(i, -): J \to \mathcal{C}$ has a limit $(L_i, (l_j^i)_J)$ for every $i \in I$ and let $L: I \to \mathcal{C}$ by $i \mapsto L_i$ be the aforementioned functor. Then the diagram X has a limit if and only if the diagram L has a limit. If they exist, they coincide.

In other notation that means that $\lim_I \lim_{J \to \infty} X \simeq \lim_{I \to J} X \simeq \lim_I \lim_{I \to J} X$.

Proof. Let $(\overline{L}, (p_i)_I)$ be a limit of L. Then $(L, (l_j^i \circ p_i)_{I \times J})$ is a cone for the diagram X. Consider the diagram

where $m : i \rightarrow \hat{i}$, $n : j \rightarrow \hat{j}$.

Here, the lower left triangle commutes because $(\overline{L},(p_i)_I)$ is a limit of L, the upper right triangle commutes because $(L_i, (l_j^i)_J)$ is a limit of $X(i, -)$ and the lower right square commutes by theorem [1.](#page-0-1)

Let $(R,(q_{ij})_{I\times J})$ be a cone over X, then it is in particular a cone over $X(i, -)$ for every $i \in I$. So since $(L_i, (l_j^i)_J)$ is a limit for $X(i, -)$ there exists a unique morphism $r_i : R \to L_i$ s.t. the following diagram commutes:

Thus we are in the situation to use theorem [1](#page-0-1) for the next diagram.

By the previous arguments all the morphisms given exist and the indicated cells commute. Now it is just to show that the triangle (R, L_i, L_i) commutes. If this is the case, we can conclude that $(R,(r_i)_I)$ is a cone over L and thus there uniquely exists an $h: R \to \overline{L}$ s.t. the diagram commutes. For this,

$$
l_j^{\hat{i}} \circ L_m \circ r_i = X(m, j) \circ l_j^i \circ r_i = X(m, j) \circ q_{ij} = q_{\hat{i}j} = l_j^{\hat{i}} \circ r_{\hat{i}}
$$
\n(3)

Hence since L_i is a limit over $X(\hat{i}, -)$ and R is a cone over that diagram, the morphism $R \to L_i$ making the diagram commute is unique. Hence indeed $L_m \circ r_i = r_i$. This shows that the triangle $(R, L_i, L_{\hat{i}})$ commutes.

Thus we have shown that for any cone $(R,(q_{ij})_{I\times J})$ over X there uniquely exists an $\bar{r}:R\to\bar{L}$ with the property that for every $(i, j) \in I \times J$ we have $q_{ij} = l_j^i \circ p_i \circ \overline{r}$. Consequently, $(\overline{L}, (l_j^i \circ p_i)_{I \times J})$ is a limit of X.

An analogous proof can be done for colimits and thus also: colimits commute with colimits.

Example 1 (Pushout-Cokernel, [Brandenburg](#page-6-0) [\[2016\]](#page-6-0) 6.6.14). In the category Ab of abelian groups and group homomorphisms, for $U_1 \subseteq A_1, U_2 \subseteq A_2$ we have the following (canonical) isomorphism

$$
(A_1 \oplus A_2)/(U_1 \oplus U_2) \cong A_1/U_1 \oplus A_2/U_2 . \tag{4}
$$

 \Box

The existence of this isomorphism is ensured by the preceding theorem. Explicitly, the construction is as follows:

Consider the finite categories

$$
I: \bullet_1 \qquad \bullet_2, \qquad J: \bullet_2 \leftarrow \bullet_0 \to \bullet_1 \tag{5}
$$

i.e. the index categories for a coproduct and pushout, respectively. Now consider the product category and the diagram

Here, the theorem comes into play:

- 1. Either firstly compute the cokernel and then the direct sum of the two. This amounts to computing colim_J $X(1, -) \cong A_1/U_1$ and colim_J $X(2, -) \cong A_2/U_2$ and then their direct sum, which is $\operatorname{colim}_I \operatorname{colim}_J X = A_1/U_1 \oplus A_2/U_2$.
- 2. Or firstly compute the direct sums and then their cokernel. This amounts to firstly computing colim_I $X(-, U) \cong U_1 \oplus U_2$ and colim_I $X(-, A) \cong A_1 \oplus A_2$ and then their cokernel colim_J colim_I $X \cong (A_1 \oplus A_2)/(U_1 \oplus U_2)$.

The respective limit cones are given in the following diagrams.

2 Commutation of Limit-Colimit

Theorem 3. Let $X : I \times J \to C$ a diagram s.t. $\text{colim}_I \lim_{I \to I} X$ and $\lim_{I \to I} \text{colim}_I X$ exist. Then there exists a canonical map

$$
\kappa : \operatorname{colim}_I \lim_{J} X \to \lim_{J} \operatorname{colim}_I X \tag{6}
$$

Proof. Firstly, by the definition of a colimit, for every $i \in I$ there exists a morphism ι_i : $\lim_{J} X(i, -) \to \text{colim}_I \lim_{J} X$. Furthermore, for every fixed $i \in I$ and $j \in J$ there exists a $l_j^i: \lim_j X(i, -) \to X(i, j)$. The analogous is true for the right side of the below diagram.

Then define κ_{ij} : $\lim_{J} X(i, -) \rightarrow \text{colim}_I X(-, j)$. If we can show that (1) $\lim_{J} X(i, -)$ is a cone over the diagram colim_I $X(-, -) : J \to \mathcal{C}$ by the definition of limit, for every $i \in I$, the set $\{\kappa_{ij}\}\$ uniquely induces a $\kappa_i: \lim_j X(i, -) \to \lim_j \text{colim}_I X(i, j)$ s.t. the corresponding triangle commutes. Then (2), in turn, the set $\{\kappa_i\}$ uniquely induces a morphism κ : colim $\lim_{I} X(i, j) \to$ $\lim_{J} \text{colim} X(i, j)$ by the definition of a colimit.

(1) Note that it suffices to show that the right lower triangle commutes. In order to use (the here stated version of) theorem [1,](#page-0-1) we will show that lower left triangle commutes.

It is to show that for every $\hat{i} \in I$ and $m : i \to \hat{i}$ there is a morphism $a : \lim_{J} X(\hat{i}, -) \to$ $X(i, j)$ s.t. the triangle commutes (for the right triangle this is b). Such an a is given by $l_j^{\hat{i}} \circ X(m, j) : \lim_j X(\hat{i}, -) \to X(\hat{i}, j) \to X(i, j)$ by theorem [1.](#page-0-1) The analogous result is that the right triangle commutes and thus $\lim_{J} X(i, -)$ is indeed a desired cone.

(2) The triangle that should commute is given by three commutative triangles.

 \Box

Example 2. Let $f : X \times Y \to \mathbb{R}$ be a function. Then, provided they exist,

$$
\sup_{x \in X} \inf_{y \in Y} f(x, y) \le \inf_{y \in Y} \sup_{x \in X} f(x, y) \tag{7}
$$

Proof. Consider the partially ordered set R as a category with morphisms \leq and X, Y as discrete index categories. \Box

Example 3. For abelian groups, there exist the morphism

$$
\kappa: \bigoplus_{i \in \mathbb{N}} \prod_{j \in \mathbb{N}} \mathbb{Z} \to \prod_{j \in \mathbb{N}} \bigoplus_{i \in \mathbb{N}} \mathbb{Z}; \quad (a_{ij})_{i,j \in \mathbb{N}} \mapsto (a_{ji})_{i,j \in \mathbb{N}} \tag{8}
$$

which is injective, but not surjective. For example, the element defined by $a_{ij} =$ $\begin{cases} 1 & j \leq i \end{cases}$ $\begin{cases}\n 0 & j > i \n\end{cases}$ is not in the image.

3 Filtered Limits - Finite Limits

Definition 1. A category $\mathcal C$ is called **filtered** if every finite diagram in $\mathcal C$ has a cocone.

Remark 1. Note that every category with a terminal object is filtered. This, thus, includes Set, Top, Cat and algebraic categories. However, for example $\bullet \leftarrow \bullet \rightarrow \bullet$ is not filtered.

Remark 2. A colimit (of shape I) in Set is explicitely given (dually to a limit) as a coequalizer of a coproduct. That is, the quotient of a disjoint union $\coprod_I X(i)$ under the equivalence relation

which is generated by $x_i \sim x_i$ if $\exists X(f) : X(i) \to X(\hat{i})$ with $X(f)(x_i) = x_{\hat{i}}$. (cf. a pushout of sets)

For a filtered index category I this amounts to $x_i \sim x_i$ if and only if $\exists t \in I : X(f)(x_i) = X(g)(x_i)$ for some $f : i \to t$, $g : i \to t$, because then there exists a cocone under that diagram and thus a morphism $X(i) \to X(i)$ making that diagram commute. Note that in the case of I not being filtered, this does not give an equivalence relation.

Theorem 4. Let $X: I \times J \rightarrow$ Set be diagram in the category of sets and let I be filtered and J finite (with n objects). Then

$$
\operatorname{colim}_{I} \lim_{J} X \simeq \lim_{J} \operatorname{colim}_{I} X \tag{9}
$$

 \Box

with the isomorphism being given by the canonical morphism described in theorem [3.](#page-4-0)

- More generally, this is true when replacing **Set** by any algebraic category. See [Brandenburg](#page-6-0) [\[2016\]](#page-6-0).
- With some subtleties, one can generalize this to index categories of higher cardinality. See Satz 5.2 in [Gabriel und Ulmer](#page-7-1) [\[2006\]](#page-7-1).
- \bullet In fact, a category I is filtered if and only if colimits of shape I commute with finite limits in Set. See section 2.13 of [Borceux](#page-6-1) [\[1994\]](#page-6-1).

Proof. The proof uses the explicit construction of limits in Set and of filtered colimits.

- κ is injective: Let $x, y \in \text{colim}_I \lim_j X$ s.t. $\kappa(x) = \kappa(y)$. Then by the construction of the limit as subset of $\prod_J \text{colim}_I X$ one may express this in coordinates as $(x_j)_J = \kappa(x) =$ $\kappa(y) = (y_j)_J$ which means that $\forall j \in J : x_j = y_j$. However, by the explicit definition of the colimit over a filtered index category as $\prod_{I} X(i, j)/ \sim$ for fixed $j \in J$, this means that there exists a $t \in I$ s.t. for $X(i, j) \rightarrow_f X(t, j) \leftarrow_g X(\hat{i}, j)$ we have $x \mapsto f(x) = g(y) \leftarrow g(x)$ for every $j \in J$. Applying the limit over J, this yields the same for $x \in \lim_j X(i, -)$ and $y \in \lim_{J} X(\hat{i}, -)$ and thus by definition their equivalence classes are equal in colim_I lim_J X, showing injectivity.
- Let $(\overline{x}_j)_J \in \lim_{J \text{ colim}_I X}$ be arbitrary. Then for all $j \in J$ we have $\overline{x}_j \in \text{colim}_I X(-, j)$, which is an equivalence class of elements in $\coprod_I X(i, j)$. Pick a representative $x_j \in X(i_j, j)$ which lies in $X(i_j, j)$ for some sufficient $i_j \in I$. Then we want to show that there exists a $t \in I$ s.t. there is a representative $x'_j \in X(t,j)$ for every $j \in J$, since then $x \in \lim_j X(t, -)$ and thus $\bar{x} \in \text{colim}_I \lim_{J} X$ which gives the surjectivity. But this is precisely the case because J is finite.

REFERENCES

- [Borceux 1994] Borceux, Francis: Handbook of categorical algebra: volume 1, Basic category theory. Bd. 1. Cambridge University Press, 1994
- [Brandenburg 2016] BRANDENBURG, Martin: Einführung in die Kategorientheorie: Mit ausführlichen Erklärungen und zahlreichen Beispielen. Springer-Verlag, 2016

[Gabriel und Ulmer 2006] GABRIEL, Peter ; ULMER, Friedrich: Lokal präsentierbare kategorien. Bd. 221. Springer-Verlag, 2006

[Herrlich und Strecker 1979] HERRLICH, Horst ; STRECKER, George E.: Category Theory. Bd. 1. Heldermann, 1979