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Example 1. (Extension of functor on poset) Consider the following situation: Let (Z,≤) and
(R,≤) be the partially ordered set of integers and real numbers, respectively. Furthermore,
consider a functor (i.e. a monotonically increasing function) f : Z → R. Is it possible/how is it
possible to extend this functor to R? That is, does there exist a monotone function g : R → R
s.t. g|Z = f and what is that function explicitly?

1 Definition via universal property

More generally, the previous example constitutes the following problem:

Let F : C → E and K : C → D be functors with a common domain. Does there exist an extension
of F along K? That is, does there exist an L : D → E s.t. the following diagram commutes?

C D

E

K

F
L

Such a functor may very well not exist. (Consider for example two morphisms k 6= h ∈ C, but
K(h) = K(k) ∈ D and F (h) 6= F (k) ∈ E). And even if such an extension exists, by no means
does it need to be unique.

Recall: Comma category Let A : C → D be a functor and let d ∈ D. Then the category
d ↓ A has as objects pairs (c, f : d → Ac) with c ∈ C and as morphisms m : (c, f) → (c′, f ′)
morphisms m : c→ c′ s.t. the following diagram commutes

d

Ac Ac′

f f ′

Am

Recall: Precomposition functor Let K : C → D. Then there exists a functor K∗ : [D, E ]→
[C, E ] via G 7→ G ◦K and η 7→ ηK.
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Definition 1 (via Universal Property). Let F : C → E and K : C → D be functors with
a common domain. Then (if it exists) the left Kan extension (LanKF : D → E , η : F ⇒
LanK F ◦K) of F along K is the initial object in the category F ↓ K∗. Explicitly this means
that for any (G : D → E , γ : F ⇒ G◦K) there exists a unique α : LanKF ⇒ G s.t. αK◦η = γ. In
other words, the left diagram (in [C, E ]) needs to commute or equivalently the two right diagrams
need to be the equal:

F LanK F ◦K

G ◦K

η

γ ∃!αK

C D

E

=⇒γ

C D

E

⇒α⇒η

K

F
G

K

F
G

Similarly the right Kan extension is the terminal object in K∗ ↓ F .

2 Characterization via Adjoints

The following proposition should make the interpretation of a Kan extension as a canonical
pseudo extension more plausible (given one interprets adjunctions as pseudo inverses).

Theorem 1. Let K : C → D be a functor and E a category. Then for any F : C → E the left
(resp. right) Kan extension LanK(F ) of F along K exists if and only if K∗ is a right adjoint
i.e. L a K∗ for some functor L : [C, E ]→ [D, E ] (resp. K∗ is a left adjoint). If that is the case,
then LanK a K∗ (resp. K∗ a RanK).

Proof. We have the following equivalent statements

• K∗ is a right adjoint i.e. L a K∗ for some functor L : [C, E ]→ [D, E ]

• ∀F ∈ [C, E ] the functor Hom[C,E](F,K
∗(−)) is representable (by L(F ))

• ∀F ∈ [C, E ] the category F ↓ K∗ =
∫

Hom[C,E](F,K
∗(−)) has an initial object (which is

L(F ))

• ∀F ∈ [C, E ] the left Kan extension LanK(F ) exists (which then coincides with L(F )) i.e.
LanK = L

Example 2. (Continuation of example 1) Consider again the situation

Z R

R

i

g
f
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The inclusion induces the functor i∗ : [R,R] → [Z,R], f 7→ f ◦ i from the set of monotone real
valued functions on R to those on Z. In order to show that a left Kan extension exists, we
are looking for functor: L : [Z,R] → [R,R] s.t. L a i∗ i.e. ∀g ∈ [R,R], f ∈ [Z,R] we have
hom(L(f), g) ' hom(f, i∗(g)︸ ︷︷ ︸

g|Z

). Since the arguments of the hom sets are functors, the morphisms

are natural transformation, which means that L(f) is such that

∀x ∈ R : L(f)(x) ≤ g(x)⇔ ∀z ∈ Z : f(x) ≤ g|Z(x) (1)

Defining L by precomposing g with the floor function satisfies equation (1). So the left adjoint
L a i∗ is given by L(f)(x) = f(bxc).

In this context, the left Kan extension of a fixed f : Z → R is then given by a monotonically
increasing function Lani(f) : R → R, x 7→ f(bxc) s.t. f(z) ≤ (f ◦ b−c)|Z(z) = f(z) s.t. for
any other monotone function h : R → R with f(z) ≤ h|Z(z) we have that f(bxc) ≤ h(x) s.t.
η ◦ α = γ. As a diagram in [Z,R] this is

f(z) (f ◦ b−c)|Z(z) = f(z)

h|Z(z)

where an arrow a→ b exists iff a ≤ b.

3 Explicit Description of Kan extensions

Theorem 2 (Explicit construction of Kan extensions as limits. [Riehl, 2017]). Let F : C → E
and K : C → D be functors with a common domain. If for every d ∈ D the colimit

colim(K ↓ d Πd

−−→ C F−→ E) (2)

exists, then LanK(F )(d) = colim(K ↓ d→ C → E) on objects defines the left Kan extension. The
natural transformation η : F ⇒ LanK F ◦K is given by the colimit cones given by the d ∈ D.

Similarly, the right Kan extension is given by RanK F (d) = lim(d ↓ K Πd−−→ C F−→ E) for every
d ∈ D and the natural transformation is given by the limit cones.

Proof. Firstly, we construct the functor LanK(F ) and the natural transformation η : F ⇒
LanK F ◦K. Then we will show that these have the desired universal property.

Constructing (LanK(F ), η): On objects, we have LanK(F )(d) = colim(K ↓ d→ C → E). For
morphisms, consider for a fixed morphism g : d → d′ the induced functor g∗ : K ↓ d → K ↓ d′
via (c, f : Kc → d) 7→ (c, g ◦ f : Kc → d → d′) and identity on morphisms. Then the following
diagram commutes.
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K ↓ d K ↓ d′

C

E

g∗

Πd Πd′

F

where Πd is the forgetful functor K ↓ d→ C via (c, f) 7→ c.

For a fixed F : C → E consider the diagram F ◦ Πd′ and its (LanF (d′), λd
′
). That diagram

induces another diagram F ◦Πd′ ◦g∗ = F ◦Πd and a co-cone (LanF (d′), λd
′
g∗)over it. Explicitly,

for the component based at (c, f) ∈ K ↓ d we have

(λd
′
g∗)f : F ◦Πd′ ◦ g∗(c, f) = F ◦Πd′(c, g ◦ f)→ LanK F (d′) (3)

However, now by the universal property of LanK F (d) as the colimit of F ◦ Πd there exists a
unique morphism LanK F (d)→ LanK F (d′) making the following commute.

FΠd(c, f) = Fc = FΠd′g∗(c, f)

LanK F (d) LanK F (d′)

λdf λd
′

g◦f

LanK F (g)

The components of the natural transformation η : F ⇒ LanK F ◦K is given by λKc1Kc
. To prove

naturality consider m : c→ c′ and the naturality square

FΠKc′(c, 1Kc′)

=

FΠKc(c, 1Kc) = Fc Fc′ = FΠKc′(c′, f)

LanK F (Kc) LanK F (Kc′)

Fm

λKc
′

1Kc′
λKc1Kc

LanK f(m)

λKc
′

Km

The lower left triangle commutes by what was shown before and the upper left since λKc
′

is a
cone.
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Existence & Uniqueness of α: It is left to show that (LanK(F ), η) fulfils the universal prop-
erty given in definition 1. So let (G : D → E , γ : F ⇒ GK) be arbitrary. We want to define a
unique α : LanK(F )⇒ G s.t. γ = αK ◦ η.

For each d ∈ D the naturality of α implies that (in particular) the lower square in the follow
diagram needs to commute.

Fc

LanK F (Kc) LanK F (d)

GKc Gd

LanK F (d)

Gf

αKc αd

λKc1Kc
λdf

By the construction of LanK F this means that the outer pentagon commutes as well. Thus with
the factorization requirement ∀c ∈ C : αKc ◦ ηc︸︷︷︸

=λKc
1Kc

= γc we ultimately have that αd needs to be

s.t.

Fc

LanK F (d)

GKc Gd
Gf

αd

λdf

γc

commutes. Now Gf ◦ γc defines a co-cone (see diagram below) over the diagram FΠd indexed
by f ∈ K ↓ d with nadir Gd, there exists a unique αd making the diagram commute. Hence for
every γ, the desired α exists and is unique.
Consider the following diagram to see that Gf ◦ γc is a co-cone.

Fc GKc

Fc′ GKc′

Gd

γc

γc′

Fm GKm

Gf

Gf ′
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Here the left square commutes since γ is natural and the right triangle commutes since G is a
functor.

Naturality of α: Consider the naturality square in the middle

Fc

LanK F (d) LanK F (d′)

Gd Gd′

GKc GKc′

λdf λd
′

g◦f

LanK F (g)

Gg

αd λd′

γc

Gf

γc

G(g ◦ f)

The upper triangle commutes, so it suffices to show that the inner pentagon commutes. This is
indeed the case, since the outer pentagon commutes by definition and each outer square commutes
because of the definition of αd.

Factorization via α: Finally, for the factorization we want to show that ∀c ∈ C we have
αKc ◦ ηc = γc i.e. we want to show that the following diagram commutes

Fc LanK F (Kc)

GKc GKc

λKc1Kc

=

γc αKc

This is a special case of the defining diagram of αd by considering c ∈ C s.t. d = Kc.

Corollary 1. [Riehl, 2017] Let C be small, D locally small and K : C → D a functor and E a
category. Then

(i) If E is co-complete, then LanK a K∗ exists and is given by the formula in theorem 2.

(ii) If E is complete, then K∗ a RanK exists and is given by the formula in theorem 2.

Proof. If C is small and D is locally small, then K ↓ d and d ↓ K are small. Thus the co-
completeness/completeness together with the theorem give the result.

Example 3. Consider the exponentiation map with base 2 defined on rational numbers. We
want to extend this function to the real numbers. Firstly, note that q 7→ 2q is a monotone map
Q→ R. So we have the following situation
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Q R

R

ι

expQ
2

expR
2

where expR
2 is the supposed extension.

The category R is complete and co-complete and Q and R are small, so by corollary 1 the left
and right Kan extensions exist. With theorem 2 they admit an explicit description as a colimit,
which in the case of a partially ordered set is the supremum indexed by the category ι ↓ x. The
object of this category are such q ∈ Q s.t. q ≤ x. Here this means that for any x ∈ R we have

2x := (Lani exp2)(x) = sup
p∈Q,p≤x

2p (4)

The right Kan extension, (via a limit construction indexed by the category (x ↓ ι) giving
(Rani exp2)(x) = infp∈Q,x≤p 2p. In this (special) case they coincide.

Example 4. (Induction of Group-Representations) Consider a subgroup H ⊆ G and a group
representation ρ : BH → Veck

1. We want to give a canonical representation of G which is
induced by ρ. The categories BH and BG are small and Veck is complete and co-complete.
Thus by corollary 1 the left and right Kan extensions exist. They are then referred to as induction
and co-induction.
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1Here BA denotes the groupoid associated to the group H
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