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1 Category Theory

Established material for Category Theory includes [Mac Lane und Eilenberg, 2013], [nlab], [stack-
sproject].

Definition 1. A category1 is a triple, consisting of a family of objects Obj(C), a family of
morphisms Mor(C), and a binary operation ◦ : Mor(C)×Mor(C)→ Mor(C) s.t.

(CAT1) ◦ is associative: ∀f, g, h ∈ Mor(C) : (f ◦ g) ◦ h = f ◦ (g ◦ h).

(CAT2) ◦ has identities: ∀f : A→ B, ∃1A, 1B ∈ Mor(C) : 1B ◦ f = f = f ◦ 1A.

Note that as opposed to a monoid, a category has a (possibly different) identity for every mor-
phism. Not even left and right identity need to be the same - they usually are not.
One can think of these definitions in a purely syntactic way, and not use any set theory what so
ever (i.e. not use ∈ etc.). We will, however, for the sake of convenience, adapt set theory and
think of the structures as one would expect.

1Here, we will denote a category by using bold font (\mathbf{·}). Görtz & Wedhorn mostly use regular font.
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In this spirit, by abuse of notation, we will often write A ∈ A to mean, that A is an object of
the category A and think of an f ∈ Mor(C) as a function A ∈ Obj(C)→ B ∈ Obj(C).
This set theoretical thinking is often the motivation or provides a primary example for many
categorical concepts - but beware!
Consider the following definition for example:

Definition 2. A monomorphism m : B −→ C is a morphism s.t. for any two parallel morphisms
a1, a2 : A −→ B we have that m ◦ a1 = m ◦ a2 implies a1 = a2.
In other words: it is left cancelable2.

One would be inclined to think that this is just a translations of the definition for injections
into the language of category theory. But that is not the case. In fact, there are categories
(e.g. Hot) where a monomorphism need not be injective. Maybe even more notably, there are
categories, for which the intuitive idea of injection and surjection we are familiar with from set
theory crumbles.

1.1 Examples of Categories

We will now consider some examples of categories. Many appear naturally in algebra, topology,
and geometry.

Category Objects Morphisms
Set Sets (Set Theoretic) Functions
Grp Groups Group Homomorphisms
Ab Abelian Groups Group Homomorphisms

CRing1 Com. Rings with 1 1-Preserving-Ring Homomorphisms
Top Topological Spaces Continuous Functions

In all of the examples above, the composition of two ”structure-preserving” functions, was a
”structure-preserving” function. For example, the composition of continuous functions is contin-
uous, the compositions of group homomorphisms is homomorphic. Hence, if one wants to define
a category, it is crucial to check whether the category is closed under ◦. Until now we have only
considered very intuitive, well behaved categories3

Other, less obvious examples include

Category Objects Morphisms
Hot CW-Complexes Homotopy Class of Continuous Maps
Pos Elements (∃!f : A→ B)⇔ (A ≤ B)
X Open Subsets of a topological space X Inclusion Maps U ↪→ V

Sh(X) Sheaves on a top. space X Natural Transformations between Sheaves on X

1.2 Side Note: CT as a one-sorted theory

As we have seen, and is natural to think, category theory (CT) is a two-sorted theory: i.e. there
are two types: objects, and morphisms. However, we can interpret the axioms of CT with a one

2An epimorphism, which is right cancelable, is defined similarly.
3In fact, we have considered concrete categories. The fact that the category of schemes is not concrete will

prove to be an obstacle later on.
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sorted model as well, consisting only of the morphisms.

For example, Zermelo-Fraenkel Set Theory is a one sorted theory - the single, primitive type
is the set. Graph theory, on the other hand, is two-sorted - in a nutshell, we work with two
underlying sets with empty intersection. Considering CT as two-sorted we can make a lot of
arguments for categories by thinking of graphs.
Interpreting CT as one sorted means identifying every object A with the identity morphism 1A
on it. Then, of course, a morphism is no longer defined as

f ∈ Mor(C) : Obj(C)×Obj(C)→ Obj(C) (1)

A 7→ f(A) = B (2)

but rather

f ∈ Mor(C) : Mor(C)×Mor(C)→ Mor(C) (3)

1A 7→ f(1A) = f ◦ 1A = 1B . (4)

For application in algebraic geometry, that is not all that relevant, but it already gives a hint
that one should study morphisms rather than objects.

1.3 Functors

Finally, we want to consider the category of categories. Its elements are categories, as examples
are given above. The morphisms between them are called functors. Concretely, this means that
a (covariant) functor4 f is a morphism

A

B

3

3

A A′

f(A) f(A′)

f

a

f f

f(a)

s.t.

(F1) ∀A ∈ A : f1A = 1f(A)

(F2) ∀f, g ∈ A : f(g ◦ f) = f(g) ◦ f(f)

These two conditions ensure that the composition of functors is again a functor, as they preserve
the structure of a category.
A contravariant functor is a functor that reverses the order of composition. Hence, for a con-
travariant functor f′ the second functor axiom becomes

(F2)
op

: ∀f, g ∈ A : f′(g ◦ f) = f′(f) ◦ f′(g) (5)

We denote f′ : Aop → B.

4Here, we will denote a functor by using fraktur font (\mathfrak{·}). Görtz & Wedhorn use calligraphy
(\mathcal{·}) or regular font.
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Proposition 1. The mapping that assigns to group G ∈ Grp its center Z(G) ∈ Ab is not a
functor.

Proof. Consider the following diagram:

Grp

Ab

C2

C2

S3

{e}

S3/A3 = C2

C2

e′

e′

(1 2)

e

e′

?

Z Z Z Z

ι π

1e 1e

Z Z Z

ι π

1e 1e

Note that a dotted mapping arrow signalizes abuse of notation since a functor maps objects and
morphisms - not elements in those objects.

We see that
Z(π ◦ i(e′)) = e′ 6= e = Z(π) ◦ Z(i)(e′) . (6)

For some more comments see the Mathematics Stack Exchange Question with ID 158438.

In essence, this is because group homomorphisms do not necessarily map centers to centers.

1.4 Natural Transformations

Now consider the category [A,B] where the objects are functors f : A→ B. Morphisms in this
category are called natural transformations5.

Definition 3. A natural transformation λ is a family of morphisms {λA}A∈A : f(A)→ g(A) s.t.
for objects A,A′ ∈ A and a : A→ A′ the square on the right commutes

f

g

A

f(A) f(A′)

g(A) g(A′)

λ

f

g

f(a)

λA λA′

g(a)

That is that

(NAT1) ∀A,A′ ∈ A : g(a) ◦ λA = λA′ ◦ f(a)

Similarly to functors, the conditions imposed on natural transformations (namely naturality)
ensures that natural transformations preserve the structure of functors, and that compositions
of natural transformations are, again, natural transformations.

5Here, we will denote a natural transformation by using lower case Greek letters.
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1.5 Hom-Set and Hom-Functor

CT was originally developed by S. Eilenberg and S. Mac Lane in their study of algebraic topology.
Functors arise naturally in the study of homology and cohomology theories6. One should note
that their original goal was to understand natural transformations and functors and that ”the
whole concept of a category is essentially an auxiliary one” [?]. The idea of studying structures
through the structure preserving maps between them - the morphisms - was already pursued by
E. Noether in her study of rings in the beginning of the 20th Century.
It thus seems natural to consider the following kinds of sets:

Definition 4. The hom-set homA(A,B) of objects A, B is a set, the elements of which are the
morphisms fi ∈ A : A→ B.

Other notations include hom(A,B), Mor(A,B), [A,B]A, A(A,B), hA(B), and hB(A). If it is
unclear which morphisms we want to consider, the specification as subscript can be useful. If
the context is clear however, we will suppress this subscript.
For example, it makes a difference whether we consider the set homk−Sch(A,B) or homSch(A,B).
A priori it is not clear that hom(A,B) is a set and not a proper class - and in general it is
not7. However, for most relevant categories it is. Categories C s.t. for each A,B ∈ C we have
hom(A,B) a set are called locally small. For the rest of the talk we will only consider such
categories.
The family of objects of the functor category [A,B] may be viewed as a hom set in the category
Cat.
Consider the assignment (A,B) 7→ homA(A,B) for objects in a category A. It can be extended
to a set valued functor which entails information about any two objects in A. So in order to
study an object X in A, we can consider the (contra-variant8) hom-functor

hX : Cop → Set (7)

A 7→ hX(A) = homA(A,X) (8)

On morphisms f : A→ B in the category A this gives

A B

hom(A,X) hom(B,X)

A X

B

g

hX(f)(g)
f

f

hX hX

hX(f)

So hX(f) : g 7→ g ◦ f .

Definition 5. Let f : C→ D be a functor. For any two objects X,Y ∈ C this functor induces
the functions

fX,Y : homC(X,Y )→ homD(f(X), f(Y )) . (9)

Then the functor f is called

6In the sense of Eilenberg-Steenrod, an ordinary/generalized homology/cohomology theory is a functor satis-
fying some axioms.

7This is relevant in the study of localizations of categories and model categories.
8A covariant version of the hom-functor exists of course. It is obtained by reversing all the arrows in the

definition. We will later need the contra-variant version though.
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• faithful, if fX,Y is injective

• full, if fX,Y is surjective

• fully faithful, if fX,Y is bijective

Definition 6. A concrete category is a pair (C,F) of a category C and a faithful functor
F : C→ Set.

Most well behaved categories are concrete. Examples include Set, Grp, Top and Par.
We can think of this functor as assigning to an object its underlying set. It is often referred
to as a forgetful functor, as it forgets part of the structure. Note that ”forgetful functor” is an
informal notion. For example, both the functor CRing→ Ab and CRing→ Set are forgetful.
They assign to a ring its additive group and underlying set, respectively.

2 Points on Schemes

Arguments, similar to the ones in this section can be found in [Mumford, 1999], and [Görtz und
Wedhorn, 2010].

2.1 Motivation

Consider the following examples:

Example 1. Consider the category of sets Set, and let z ∈ Set be a singleton (which is of
course unique up to isomorphism). Then for any S ∈ Set

hz(S) = hom(z, S) ' F(S) (10)

where F is the forgetful functor from before.

Example 2. Consider the category of differentiable manifolds Man, and let z ∈ Man be the
manifold consisting of only one point. Then for any M ∈Man

hz(M) = hom(z,M) ' F(M) (11)

The iso on the right assigns to a morphisms its image.

Example 3. Consider the category of groups Grp, and let Z ∈ Grp be the additive group of
the integers. Then for any free group G ∈ Grp

hZ(G) = hom(Z, G) ' F(G) (12)

The iso on the right assigns to a homomorphism the image of 1 ∈ Z.

Example 4. Consider the category of commutative rings with identity CRing1, and let Z[x] ∈
CRing1 be the polynomial ring in one variable x. Then for any R ∈ CRing1

hZ[x](R) = hom(Z[x], R) ' F(R) (13)

The iso on the right assigns to a homomorphism the image of x ∈ Z[x].
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In all of the above cases, the action of the forgetful functor F was equal to that of the hom-functor
hz for some z ∈ C. This is what is called a representation of the forgetful functor.
They satisfy our condition of injectivity. Arguably, this is most clearly illustrated by example 1.
For some z ∈ C we want a morphism f : X → Y to uniquely determine a morphism f : r(X)→
r(Y ). In other words, we want the functor r : C→ Set to be faithful - i.e. we require

∀X,Y : homC(X,Y ) � homSet(r(X), r(Y )) (14)

to be an injection.
In general, such a transition of data by an hz with an z ∈ C is not possible for schemes.

2.2 Definition

So in conclusion, characterizing schemes by a set of morphisms from/to a single scheme is not
enough information.
It was Grothendieck’s idea, to not consider a single z ∈ Sch, and hence hom(z,X) as a charac-
terization of X, but to consider

{hom(z,X)}z∈Sch . (15)

This results in the definition to give a scheme X as a functor

hX : Schop → Set (16)

A 7→ hom(A,X) (17)

(f : A→ B) 7→ (hom(f,X) : hom(A,X)→ hom(B,X); g 7→ g ◦ f) (18)

2.3 Reservations about the Definition

We have just added huge amounts of information to the previous notion of points (as morphisms
into the object). It is (at least) reasonable to ask whether that is sensible. Usually the problem
with such an approach becomes apparent in one of two ways9

• Loss of efficiency. For example, brute force approaches in algorithmic are intuitive, but
they use ”the maximum” of available data. As a trade-off they are very inefficient. Take
for example the simplex algorithm: the set of solutions to a system of linear inequalities
forms a (possibly unbounded) convex polytope, where it is our goal to find the optimal
solution among these points. The brute force approach would be to just check every point
(using ”all” the data). However, in order to find the optimal solution we only need to
consider vertexes of the polygon. Furthermore, with the algorithm, we choose one vertex
and then move from one to another. This could mean the difference between checking less
than 10 points to uncountably many.

Slogan: ”We don’t want data that is known to be irrelevant.”

• Too much data to make meaningful statements. The prime example for this is the discrete
topological space (X, τ = ℘(X)). Here, every function into any other topological space
is continuous, defeating the very purpose of defining topological spaces in the first place.

9There may be better analogies to what is going on. The general idea, however, is that there are some
reservations about this.
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Another, very similar example is a measurable space with the σ-algebra being equal to
℘(X).

Slogan: ”We want little enough data to make distinctions.”

In the following part, we will see that our choice of data gives just the right amount. The proof
for this is the Yoneda Lemma.

3 Yoneda Lemma

This section is largely based on section 30.6 [Herrlich und Strecker, 1973]. Görtz & Wedhorn
cover the Yoneda Lemma (less thoroughly) in section (4.2).

As always in CT, there are two versions of this lemma: a co-variant and a contra-variant version.
For our application on schemes we will need the contra-variant version, which is why we will now
consider this version.

Theorem 1. Let hX , f : (C)op → Set be contra-variant functors, where hX is representable.
Then there exists a bijection

Γ : Nat[(C)op,Set](hX , f)
∼−→ f(X) . (19)

that is natural in both X and f. Its inverse is given by Γ′.

The proof will be done by showing that the mappings

Γ : λ 7→ λX(1X) (20)

{ρA}A∈C = ρ← [ x : Γ′ (21)

with the property that ρA(f) = (f(f))(x) are inverse to each other.
Firstly though, we will make two checks of well-definition.
Consider therefore the following two remarks:

Remark 1. λX(1X) ∈ f(X).

Proof. λX is a mapping hom(X,X)→ f(X). Hence λX(1X) is an element of f(X).

Remark 2. ρ is a natural transformation: hX → f.

Proof. Hence, we need to show that that for every g : A→ X the following diagram commutes

A

B

hom(A,X) hom(B,X)

f(A) f(B)

hom(f,X)

f(f)

ρA ρBf

8



That is:

(ρB ◦ hom(f,X))(g) = ρB(g ◦ f) (22)

= f(g ◦ f)(x) (23)

= (f(f) ◦ f(g))(x) (24)

= f(f)(ρA(g)) (25)

= (f(f) ◦ ρA)(g) (26)

Hence, ρ is natural.

3.1 Isomorphism

Lemma 1. Γ ◦ Γ′ = 1f(X).

Proof. For an arbitrary x ∈ f(X), we have

(Γ ◦ Γ′)(x) = Γ(ρ) (27)

= ρX(1X) (28)

= f(1X)(x) (29)

= 1f(X)(x) (30)

Since we chose x arbitrarily, Γ ◦ Γ′ = 1f(X).

Lemma 2. Γ′ ◦ Γ = 1Nat(hX ,f).

Proof. Let λ be a natural transformation hX → f(X). Then we have

Γ(λ) = λX(1X) (31)

Now let δ ∈ Nat(hX , f) and define δ := Γ′(λX(1X)). We now need to show that δ = λ i.e. that
for an arbitrary element A ∈ C : δA = λA.

Firstly we will show this for A = X, as we will need it in the proof of the general case. By
definition ρA(f) = (f(f))(x) we have that

λX(1X) = 1f(X)(λX(1X)) = f(1X)(λX(1X)) = ρX(1X) . (32)

Now for the general case:

Let A ∈ C and f : A→ X. Then

ρA(f) = ρA(1X ◦ f) = (ρA ◦ hom(f,X))(1X) (33)

Now by apply the naturality of ρ (and λ) and consider the special case from before to obtain

(ρA ◦ hom(f,X))(1X) = (f(f) ◦ ρX)(1X) = (f(f) ◦ λX)(1X) = (λA ◦ hom(f,X))(1X) (34)

Now since λ is also a natural transformation we can go the way back (read right to left)

λA(f) = λA(1X ◦ f) = (λA ◦ hom(f,X))(1X) . (35)

This is what we wanted to show. Hence ρ = λ and Γ′ ◦ Γ = 1Nat(hX ,f).
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3.2 Naturality

Finally, we need to show that if we consider Nat[(Sch)op,Set](hX , f) and f as functors: Setop×C→
Set, the natural transformation Ξ needs to be natural in both X and f. This means that the
following two diagrams have to commute:

Nat(hX , f) Nat(hX
′
, f)

f(X) f(X ′)

Naturality in X

Nat(hf , f)

f(f)

ΓX ΓX′

Nat(hX , f) Nat(hX , g)

f(X) g(X)

Naturality in g

Nat(hX , µ)

µX

Γf Γg

We will not show this here, but rather reference the (extensive) proof given by Drew Armstrong.

3.3 Conclusion

This is precisely what we wanted:
The injectivity ensures that we can meaningfully transition between schemes and no data was
lost; the surjectivity ensures that no new data is introduced.
Consider the case where Y ∈ Sch and f = hY . Then by the Yoneda Lemma we have the bijection

Nat(hX , hY ) ∼= hom(Y,X) (36)

meaning the functor hX is faithful (and full) by definition 5. It is precisely this faithfulness we
desired for the characterization to be useful. The surjectivity on the other hand entails that no
information is lost in the process of expanding the characterization to an entire functor.

4 Fiber Products (Pullbacks)

We start this section by the simple observation that the set theoretic product does not make
sense in the setting of schemes. Consider affine schemes: Naively, one may define the product of
a locally ringed space as the cartesian product A1 ×A2 of the underlying sets of the underlying
topological spaces (A1, τ1), (A2, τ2), endowed with the product topology and let that product,
then, induce the product on sheaves. However, this approach fails, since the Zariski topology on
A1×A2 is different than the product topology of τ1, τ2. Hence, we will have to consider different

10
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notions of product for schemes.

Before we define the fiber product, let us briefly consider the regular, categorical product in a
category C.

Definition 7. A product A1×A2 (or A1

∏
A2) of two objects A1, A2 ∈ C is a triple (A1×A2, π :

1, π2) s.t. the following diagram commutes and A1 ×A2 has the universal property

P ′

A1

∏
A2 A1

A2

Product

P ′

A1

A2 A1

∐
A2

Co-Product

π1

π1

v∃!

u
ι2

ι1

v

∃!u

The dual notion: the coproduct is given in the right diagram

Definition 8. The fiber product P = A1×A0
A2 of A1, A2 ∈ C with f1 : A1 → A0, f2 : A2 → A0

is an object in C together with two maps p1 : P → A1, p2 : P → A2 s.t. the following diagram
commutes

P ′

P A1

A2 A0

Pullback

P ′

A0 A1

A2 P

Pushout

p1

f2

p1 f1

v
∃!

u

f1

p2

f1 p1

v

∃!
u

hence s.t. f1 ◦ p1 = p2 ◦ f2 and s.t. for every P ′, u, v factor uniquely through P . The diagram
given on the right describes the dual notion: the pushout.

From their universal property it follows that pullbacks and pushouts are unqiue up to unique
isomorphism, given that they exist - they do not exist in an arbitrary category though.
Now consider this in conjunction with the definition of a relative scheme:
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Definition 9. A relative scheme (or S-scheme) is an object in the category Sch/S s.t.

Obj(Sch/S) := {f : X → S|X ∈ Sch} (37)

Mor(Sch/S) := {g : X → X ′|f = f ′ ◦ g} (38)

In other words, s.t. the following diagram commutes:

X

S

X ′
g

f ′f

From this definition it is clear that the fiber product is the categorical product in the category
C/A0. And it is also clear that if we form the slice category C/Z over a terminal object Z ∈ C,
we have the fiber product in that category equal to the product in the category C. This is
because by the definition of the terminal object we can identify the morphisms X → z with the
”elements” of X.

We say that p1 is the pullback of f2 along f1 and that p2 is the pullback of f1 along f2.
Consider the situation for Set to gain some intuition for how products and co-products, and
pullbacks and pushouts are different:

A1

∏
A2 A1

A2

A1

∏
A2 := {(a1, a2) | a1 ∈ A1, a2 ∈ A2}

A1

A2 A1

∐
A2

A1

∐
A2 := {(a, i) | a ∈ Ai}

A1 ×A0 A2 A1

A2 A0

A1 ×A0
A2 := {x ∈ A1

∏
A2 |

f1 ◦ g1(x) = f2 ◦ g2(x)}

A0 A1

A2 A1 +A0 A2

A1 +A0
A2 := (A1

∐
A2)/ ∼ s.t.

(a, 1) ∼ (a, 2) :⇔ f−11 ((a, 1)) = f−12 ((a, 2))

π1

π1

ι2

ι1

p1

f2

p2 f1

f1

p2

f1 p1

With some slight changes, the examples above can be considered in Set, Grp, or Top, too.
Sometimes, we denote the pullback of f1 along p2 by p2

∗f1 and the pushout by p2∗f1. This
notation should look familiar, as we have defined the direct image F ′ = f∗F of a sheave F on a
topological space X as

12



F ′ = f∗F = F ◦ f−1 (39)

i.e. the pushout of F along f−1. With this spirit, we may consider the image of F ∈ Sh(X)
as Set ×X Y . The inverse of a sheave, on the other hand, is given as the sheafification of the
pullback.
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